Control Valve Worksheets           

UPDATES

If you download any of my worksheets, you might want to check back from time-to-time to see if I have made any revisions. If you send me an email specifically requesting to be notified of revisions, I will do so. I will NOT send you any communication you have not specifically requested.

DISCLAIMER

These worksheets are distributed at no charge on an as-is basis. The author does not assume any liability for their use.

 

WORKSHEET PROTECTION AND COPYRIGHT

 I have protected the worksheets to prevent accidental changes to the formulas and calculation method. It is still possible to see the formulas that are used so that those who are interested can verify the calculation method, or use my calculation methods and formulas in their own worksheets or other programming environments.

If you want to make changes to the worksheets, the password is eliminator, but you do so at your own risk. Note that some of my newer worksheets, though protected to prevent accidental changes, do not require a password. For those newer sheets, simply select from the Excel Review menu, Unprotect sheet.

I have not claimed copyright to these worksheets because I want them to be used by anyone who wants to use them. If you design your own worksheets or other program using my formulas and calculation methods, leave my name off, as I don’t want credit for any possible incorrect calculations.

 


Control valve sizing worksheets

The download is a zip file which contains a short instruction manual, and Excel® worksheets for:

Liquid (Volumetric flow units) Includes a tab that can convert mass flow to volumetric flow

Gas (Volumetric flow units where the molecular weight or specific gravity is known)

Gas (Mass flow units where the density is known. This includes steam.)

 A unique feature of these worksheets is that in addition to performing traditional Cv calculations, they can also graph the installed flow characteristic and installed gain of a valve when it is installed in a particular system.

These worksheets are based on ANSI/ISA-75.01.01 (IEC 60534-2-1 Mod) -2012 "Flow Equations for Sizing Control Valves." Each has space for four simultaneous calculations. For example, you can calculate required control valve capacity (Cv or Kv) for Minimum, Normal, Maximum and one additional flow condition. Engineering units are by default set to US units, but can be easily changed to SI units. Your experience with these worksheets will be much better if you read the included "Instructions."

Revised on 5/17/17 to add a noise calculation for a typical multi-stage (low noise) globe valve.

Revised on 9/6/17 to simplify selection of engineering units to be used in the calculations

Revised on 11/2/17 Some added features, including suggestions for FL and xT based on the calculated Cv. None of the previous calculations have been changed.

Revised on 1/23/18: Revised the Globe valve FL and xT calculation formulas based on more current available data. Nothing else was changed.

Download
Control Valve Sizing Sheets and Instructions
Valve Sizing Worksheets Rev 3.5.zip
Compressed Archive in ZIP Format 6.0 MB
Download
Valve Sizing Worksheet Revision History
REVISION HISTORY.pdf
Adobe Acrobat Document 269.7 KB

IEC Control valve noise calculation worksheets

Here are my latest worksheets. I have recently become a member of the ISA S75.07 committee that is working on standards involving control valve noise. So far my main effort has been to make Excel® worksheets that calculate Aerodynamic and Hydrodynamic noise in accordance with the current IEC Standards. These calculations involve many equations and, in the words of Dr. Hans Baumann are a "programmers nightmare." I have to agree with him!

Here are two zip files, one for Aerodynamic noise and one for Hydrodynamic noise. Each contains a worksheet for flow in mass flow units and a worksheet for volumetric flow units. Also included for each is a short instruction file.

On 1/15/18 I replaced the Hydrodynamic noise file with Rev. 1b. The only change is that I added the option of either entering a known value of xFz or letting the worksheet calculate an approximate value using Equation 3 of the Standard.

 

I also added a worksheet that will calculate typical FL, Fd and xFz parameters for the IEC noise worksheets when they are not available from your preferred valve manufacturer.

Download
IEC Aerodynamic noise Excel worksheets and instructions
IEC AERODYNAMIC NOISE.zip
Compressed Archive in ZIP Format 498.4 KB
Download
IEC Hydrodynamic noise Excel worksheets and instructions
IEC Hydrodynamic Noise R1b.zip
Compressed Archive in ZIP Format 522.2 KB
Download
IEC Noise Parameters
This worksheet calculates typical FL, Fd and xFz parameters for use in the IEC aerodynamic and hydrodynamic noise worksheets when manufacturer’s data is not available.
2/15/18 Replaced file with Rev 1. Minor changes to method for calculating xFz. Calculated results did not change.
xFz FD FL for IEC Noise Calcs R 1.xlsx
Microsoft Excel Table 33.0 KB

Liquid vapor pressure worksheet

This worksheet approximates liquid vapor pressure for control valve sizing purposes. The calculation uses the Antoine equation along with Antoine parameters as presented on the "NIST Chemistry WebBook." The worksheet includes a link to the NIST Chemistry WebBook, along with instructions for using the worksheet.

On Aug. 31 2015 I replaced the original worksheet with Rev 1a which allows temperature input in either degrees C or F and returns vapor pressure in both bar and psia.

Download
Vapor Pressure Rev 1a.xlsx
Microsoft Excel Table 14.7 KB

Gas compressibility factor worksheet

Revised May 6, 2017. Minor revisions to some tabulated data. Added a README (Information and Instructions) tab.

Revised May 28 2017. Minor corrections to some tabulated values. Added tabulated values for Tr = 2.5 for increased accuracy.

 This worksheet approximates the compressibility factor of gasses for control valve sizing purposes. It uses tabulated data from the Nelson Obert charts with two dimensional interpolation between the tabulated reduced pressure points and reduced temperature points.

It is valid for reduced temperatures (Tr) between 1.0 and 15 and reduced pressures (Pr) between 0.0 and 20. The worksheet shows the reduced pressure and temperature being used in the calculation, and informs the user whether each is within the limits of the worksheet.

There is space on the worksheet for four calculations to make it easily compatible with the four calculations performed by the above control valve sizing worksheets.

Download
Gas compressibility factor based on the Nelson-Obert generalized compressibility charts.
Compressibility Factor Rev 1a.xlsx
Microsoft Excel Table 62.8 KB

Control valve P1 and P2 vs. flow

This worksheet approximates the behavior of P1 and P2 (pressure upstream and pressure downstream of a control valve) at different flow rates. This might be useful if valve Cv calculations need to be made at several flow rates, when only P1 and P2 are known at the maximum and minimum design flow rates. The principle behind the calculation is that pressure loss in a piping system is approximately proportional to flow squared.


Although the units on this worksheet are shown as gpm and psig, the calculation method is independent of units and the user can use any appropriate units.

On 8/20/15 I replaced Revision 1 of the file with Revision 2, which reformats the worksheet to allow entry of any minimum design flow and adds an Instruction tab and a Calculation Method tab.

Download
Control Valve P1 and P2 vs Flow Rev 2.xl
Microsoft Excel Table 101.8 KB

Liquid Pressure Drop in Pipe and Fittings

This worksheet calculates the pressure drop in liquid piping systems.

 

There are ten columns of identical individual calculations. You can use just one, or you can use more than one for different flow rates in the same system, for unrelated calculations or for chained calculations for the same system where you want to break the system down into several small systems in series.

 

There is a description of how the worksheet works and instructions for its use on the second tab.

On 5/21/15 I added a third tab with typical isolation valve Cv values.


Download
Liquid Press drop In Pipe.xlsx
Microsoft Excel Table 52.3 KB






























xx