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Chapter 1

Review of Mathematics 
for Process Dynamics
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The purpose of this chapter that presents an overview of the 
mathematics that apply to process dynamics is to familiarize you 
with, or refresh your memory of, some of the terms that are used in 
the chapter on “Dynamics of Industrial Processes” and that are used 
by control system engineers. 

The final goal of this chapter is to instill in the reader an 
understanding of “transfer functions,” the topic at the bottom the list 
of topics in the figure above. To help the reader appreciate the 
importance of each of the topics, the discussion below starts with 
transfer functions and works up the list explaining how each topic 
depends on an understanding of the previous topic. 

When we talk about how various process elements (heaters, 
blending tanks, etc.) respond to various types of inputs we will use a 
shorthand notation that involves block diagrams and transfer 
functions. 

Because the transfer functions are written in terms of the Laplace 
transform of a process element’s response to time varying inputs, 
we need to understand what the Laplace transform is. The block and 
transfer function in the figure above are particularly important. Write 
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down the expression in the block and the words “first order lag” as 
we will keep coming back to them. 

The time constant is central in describing the dynamic behavior of 
most process elements. (The tau, , in the transfer function in the 
figure on the previous page represents the time constant.) Since the 
time constant is a characteristic of the naturally occurring 
exponential decay we need to discuss that topic. 

To understand the exponential decay we need to define the 
Exponential function and the number “e” which describes things 
whose rate of change depends on their size at that time. Since the 
Exponential function is based on the Derivative and rate of change, 
we need to define these subjects. 

Since all the mathematical concepts we will talk about are functions 
of various types, we need to discuss what a function is. 
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The first topic is FUNCTIONS. 

A function describes how one variable (in this case, y) depends on 
another variable, in this case x. In this example, the value of y 
depends on the value of x, so we say y is the dependent variable 
and x is the independent variable. We also say that “y is a function 
of x” and write it as shown in the box 

A function can be thought of as a machine (depicted on the right side 
of the figure) into which you put values of the independent variable 
and get out the corresponding values of the dependent variable.  

In this example the functional relationship between x and y is that y 
is 2 times x. When you put an x of 10 into the function (or machine), 
a y of 20 comes out and when you put in an x of 20 a y of 40 comes 
out.  
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Since I am leading up to a discussion of PROCESS DYNAMICS 
where we will talk about how the inputs and outputs of processes 
change with time, we will be talking about FUNCTIONS OF TIME. 

The figure on this page is the same as the one on the previous page, 
except that y is a function of time, that is the value of y depends on 
time and everywhere there was an x on the previous page, there is a 
t (for time) on this page.  
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Besides seeing y written as it was on the previous page (top box on 
this page) it is also sometimes written like in the second box and we 
would read it as written in the second box. 

Later I will be referring to time functions whose shape is to be 
determined, or could be assigned different equations and shapes. 
Then they will be written as shown in the third box and I will simply 
refer to it as y or u of t, meaning it is a yet to be determined function 
of time. 

It is fairly common to refer to the inputs to process elements as u 
and the outputs from process elements as y. 
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The rate of change of the dependent variable with respect to 
changes in the independent variable is of considerable interest in the 
study of dynamic systems. In the case of a linear function (one 
whose graph is a straight line) the rate of change is constant and is 
equal to the slope of the graph. The rate of change can be 
determined very simply by choosing an arbitrary  change in y  (which 
we call “delta y) and dividing it  by the corresponding change in x 
(which we call “delta x.” 

In this example I have arbitrarily chosen to evaluate the rate of 
change of  y with respect to x using the two points A and B. Between 
points A and B the change in y is 20 and the corresponding change 
in x is 10. 20 divided by 10 is 2, so the rate of change of y with 
respect to x is 2. 
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With a non-linear graph, determining the rate of change of the 
dependent variable (in this example, y) with respect to the 
independent variable (in this example, time or t) is not so simple, 
because the rate of change is constantly changing. 

This graph describes how far some object has traveled from the 
starting point (0) at various times. That is after 10 seconds, it has 
traveled 100 feet, and after 20 seconds it has traveled 400 feet. At 
any time, the distance it has traveled is equal to the time squared. 

 

 

   



9 
 

0

100

200

300

400

0 10 20

y

t

P
o

si
ti

o
n

 (
fe

et
)

Time (seconds)

A

Rate of change of y with respect to t

= Slope of Graph

The Derivative

 

 

NOTE: THE ONLY CHANGE FROM THE PREVIOUS PAGE IS 
THAT THE TITLE CHANGES FROM  “RATE OF CHANGE” TO 
“THE DERIVATIVE.” 

 

This is where calculus and the derivative come in. 

Here we have a function that describes the position of an object that 
is moving along the y axis with respect to time. 
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The way calculus addresses the situation of finding the 
instantaneous slope of a changing curve at some point, A, is to start 
with a second point, B, some distance away. The CHORD AB and its 
slope delta y / delta t could be considered a rough approximation of 
the instantaneous slope (and rate of change) at Point A, but it is a 
very rough approximation. Then we start decreasing delta t, causing 
point B to move closer and closer to point A. Delta t and delta y get 
smaller and smaller and delta y / delta t becomes a better 
approximation of the instantaneous slope at A.  As delta t 
approaches zero, the distance between B and A gets extremely 
small, and  the chord AB becomes a tangent to the graph at  A and 
its slope (delta y over delta t) becomes  the instantaneous  rate of 
change of the graph at point A. (The following pages demonstrate 
this showing how its slope decreases to approximate the 
instantaneous slope at A.)  
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Delta t has become smaller, and the slope of the chord AB has 
become a better approximation of the slope and instantaneous rate 
of change of y at Point A. 
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Delta t has become even smaller, and the slope of the chord AB has 
become an even better approximation of the slope and 
instantaneous rate of change of y at Point A. 
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Here is the same graph when B has become extremely close to A 
and delta t has become arbitrarily close to zero. (I can’t even draw in 
the labels for delta t and delta y any more because they are so close 
together.) 
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In order to see delta t and delta y, the area where A and B are is 
magnified at the right. As delta t approaches zero calculus changes 
to deltas to lower case d’s (called differentials). We then say that the 
instantaneous rate of change of the function at point  A is dy over dt 
and define this as what is called the DERIVATIVE, which describes 
the instantaneous rate of change of y with respect to t. 

In the case of this example where the graph is of position (feet) vs. 
time (seconds), the rate of change of position is velocity (feet per 
second). 
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By  going through a lot of steps that are beyond the scope of this 
discussion, calculus comes up with formulas that give the equation 
of the derivative if we know the equation of the original function.  

For a formula of the form y =tA the equation of the derivative is 
shown on the figure above. (For the purpose of this discussion, you 
don’t need to remember this formula.) 

In the case of y =t2 , the appropriate formula gives a derivative or 
instantaneous rate of change 2t for all values of  t. 

That is, when t equals 10 seconds, the velocity is 20 feet per second 
and when t equals 20 seconds, the velocity equals 40 feet per 
second. 

By definition the instantaneous rate of change is called the first 
derivative and is denoted by dy / dt (very often read as “dy, dt” , “y 
prime” or in the case of time varying functions “y dot.” 
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Very often, the rate of change of a derivative is useful and has 
physical meaning. This is the graph of the derivative of the function 
on the previous page. The rate of change of velocity is acceleration. 

This one is easy to solve, because the function is a linear one. Its 
rate of change at all points is 2, and because the units of y prime are 
feet per second, and the units of t are seconds, the rate of change of 
y prime (velocity) is 2 feet per second per second which is 
acceleration. 

The derivative of a derivative is defined as the second derivative and 
can be denoted by d2y / dt2 (very often read as “d two y by dt 
squared,” “y double prime” or in the case of time varying functions 
“y double dot.”) 
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The next subject is the exponential function. 

In nature, one of the most common ways for things to change is the 
way in which their rate of change with respect to time (y dot) is 
proportional to their size (y) at that instant. A population that is twice 
as big grows at twice the rate. When you are four times as wealthy, 
you will accumulate wealth four times as fast. This is called an 
exponential relation. 

When y = 5, the instantaneous slope of the graph (its derivative) 
equals 5. 

When y = 10, the instantaneous slope of the graph (its derivative) 
equals 10. 
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In order to describe the behavior of things that follow the principle of 
natural growth we define what we call the Exponential Function,  
which has the formula y = et . For the exponential function to 
describe things that change at a rate equal to their size  (that its 
derivative (y dot) at any point is equal to its value) it turns out that e 
must have the value 2.7182 ... (to as many decimal places as 
desired). 

This makes e one of those special numbers like pi, that describes a 
natural relationship. 
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A very important waveform or graph that describes the behavior of 
many process systems is that of the Exponential Decay where y = 
1-e-t. Here the rate of increase  in y is INVERSLY proportional to y. 
(The rate of increase becomes LESS as y gets bigger. 

In the diagram, the flow of water into and out of the tank are constant 
and the level has stabilized and is also constant. If we were to 
suddenly move the control valve stem so as to make a step 
increase the flow into the tank by, say 5%, the level in the tank would 
begin to rise. As soon as the level increases, the head at the bottom 
of the tank also increases and the flow out of the tank increases. As 
a result, the rate of change of the level decreases. At some point the 
outflow equals the new higher inflow and the level stabilizes at a 
new, higher point. The graph shows how the level will change with 
time. 
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This is a more generalized and more common way of looking at the 
exponential decay or what is often called a first order lag. Here we 
look at the response between zero (before the process has started to 
respond) and 100% (when the process has reached its final value). 
For example, if the tank level went from 16 feet to 18 feet, the total 
response (100%) is 2 feet. We also normalize the time scale, using 
what is called the Time Constant.  The scale is in numbers of time 
constants. (NOTE that because the horizontal scale is now in 
numbers of time constants and not time, the equation is now 1-e 
raised to the minus t over tau instead of 1- e to the -t.) 

The time constant is another of those special numbers (like pi and 
e). The time constant is defined as “The time required for a system 
that follows the exponential decay to complete 63% of its total 
response.” (Actually 63.21…% to as many decimal places as you 
want.) Usually when talking about time constants, the decimals of a 
percent are ignored.) We use the symbol Tau for the time constant, 
so t over tau of 1.0 means that a time equal to one time constant has 
elapsed. A  t over tau of 2.0 means that a time equal to two time 
constants has elapsed.  

There are two interesting features of the time constant: (1) During 
the first time constant, the process responds through 63% of the total 
response. During the second time constant it responds through 63% 
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of the remaining portion of the total response and so on. (This only is 
true if the time constant has the value of 63.2...%.) Most people 
agree that for all practical purposes a system has reached its full 
response after 5 time constants. If we were to be mathematically 
correct, it would never reach final value.   
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(2)If the response of a first order system continued at its initial rate 
(slope), the response would reach 100% in 1 time constant. In fact, if 
you take the slope at any point, it will intersect the 100% line on the 
graph after 1 time constant. 
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The reason this type of response is called a “First Order Lag” is 
because this type of response is described by a first order differential 
equation. That is an equation that contains a first order derivative (y 
dot) but no higher derivatives. (See the equation at the right side of 
the figure.) 
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The way this type of equation is solved is by integrating it as shown 
at the bottom of the figure. It turns out that integrating many of the 
waveforms (functions of time) that are encountered is not all that 
easy to do, and in general solving these equations is very difficult. 
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The Laplace transform is named in honor of mathematician and 
astronomer Pierre-Simon Laplace, who used the transform in his 
work on probability theory.  

Laplace noted that although the waveforms of most time functions 
were difficult to integrate,  the exponential decay and the sin function 
have derivatives that are of the same form as the original function 
and thus are easy to integrate. Also integrating a decaying sine wave 
(as shown at the top left of the figure) is also fairly easy (at least for 
mathematicians). 

There are several ways to express a decaying sine wave. The one 
with the “sin”function is the most obvious. If you are willing to sit 
through some tedious mathematical manipulation you can show that 
the others are equivalent. The one with e-st  is the one used in the 
Laplace transform where “s” is called the Laplace operator. 

 

 

 

   



26 
 

 

 

The figure on this page is the same as on the previous page except 
for the definition of the Laplace Transform shown inside the box. 

The Laplace transform is a method of transforming hard to solve 
differential equations into easy to solve algebraic equations. The 
method is based on multiplying any (hard to integrate) function of 
time by the easy to integrate decaying sine function, and then 
integrating the resulting function. 
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Extensive tables of common functions and their Laplace transforms 
have been developed, so we do not have to bother ourselves with 
the integration part of the transform in order to use it.  

At the right of the figure is a very abbreviated table of Laplace 
transforms. You can see that the transformed functions do not 
contain time or derivatives and thus are simple algebraic 
expressions. 
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The next pages demonstrate how the Laplace Transform is used to 
solve a differential equation. This demonstration will solve the 
differential equation for a “First order lag” which we saw previously 
and has been repeated on the left side of the figure. 

You will note that no calculus or integration is involved, only 
algebraic manipulation. 
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Replace each term with it’s Laplace transform as shown on the 
second line on the left side of the figure.  

Tau, the time constant is a constant, and the transform of a constant 
is simply the same constant, so tau in the time domain simply 
transforms to tau in the Laplace domain. 

From the table, the first derivative (y dot) transforms to sY(s). The s 
in parentheses is to remind us that functions in the Laplace 
transform are functions of s, the Laplace operator. 

y(t) and u(t) are at this point unknown time functions (the input signal 
or waveform u, and the resulting output waveform, y), so we simply 
transform them as “the Laplace Transform of a time function to be 
determined later.”  That is, y(t) transforms to Y(s) and u(t) transforms 
to U(s). By convention we use capital letters to clarify that we are 
talking about the transform. We also write it as a function of “s” the 
Laplace operator, to further clarify that we are talking about a 
function that is in the Laplace domain. 
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Using simple algebra, rearrange the transformed equation so that it 
is solved for the Laplace transform of the output [Y(s)].  

Y(s) was factored out of the left hand side of the second equation as 
shown in the third line. 

 Finally both sides of the third equation were divided by (tau s + 1), 
giving us the fourth line where the transformed differential equation 
is solved for the Laplace transform of the output from a first order 
system, Y(s) given the Laplace transform of any given input, U(s). 
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Now that we know the general form of the transformed output 
waveform given any transformed input waveform (the fourth line), 
let’s see what the response would be for a unit step change in input. 

Replace U(s) with the transform of a unit step which is 1/s and 
simplifying we get the expression in the box which is the Laplace 
transform of the output from a first order system when the input is a 
unit step at time zero. 
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The final step is to convert the Laplace transform of the output 
waveform to a time based function. Looking down the list of Laplace 
transforms, we see that the one next to the bottom of the list is 
identical to the Laplace transform of the output, Y(s), of the first order 
system to a unit step input. 

The corresponding time function is shown in the box at the lower left. 
Look at the next page and you will recognize it as the time function 
that describes the response of a first order system to a step change 
in input. 
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In this case, the time function we came up with is the familiar first 
order response to a step increase. (No surprise here since in this 
case we already know the time response of a first order system to a 
step input.) 

The same process is used by control engineers for determining the 
output of  dynamic systems based on various types of inputs. 
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Our final topic is that of “Transfer Functions”, which is a convention 
used by control system engineers to describe how a dynamic 
element acts on a time changing input. 

Going back two pages (repeated in the above figure) we had derived 
the Laplace transform of the output from a first order system for any 
type of input signal. (See the fourth line on the left side of the figure.)    
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By convention, control system engineers talk about the “Transfer 
Function” of a dynamic element. The “Transfer Function” is defined 
as the “Output of a dynamic element divided by the input to that 
element.” (Always expressed in the Laplace domain.) 

We obtain the transfer function (output divided by input) of our first 
order system by dividing both sides of the output equation by U(s), 
yielding the transfer function of   1/tau s + 1. 

Control system engineers very often describe dynamic systems by 
drawing a box, or group of connected boxes, each with a transfer 
function written inside, and these are referred to as block diagrams. 
In the chapter on “Dynamics of Industrial Processes” we will use 
simple block diagrams (mainly with the transfer function of first order 
systems). When you see a block in that chapter with the transfer 
function shown in the above figure, there are two things you should 
recognize: 1) The form of the transfer function (1/tau s + 1) tells you 
that the box represents a process element that has a first order 
response (also referred to as a “first order lag”) and 2) the number 
that replaces the placeholder “tau” is the element’s time constant. 
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Chapter 2

Dynamics of Industrial Processes
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In the Review of Mathematics for Process Dynamics chapter we 
worked up to the subject of transfer functions. 

A transfer function tells us what will happen to an input signal as it 
passes through the process element and therefore tells us what sort 
of dynamic behavior that element exhibits. The transfer function of a 
process element is the Laplace transform of its output divided by its 
input.   

A common way of discussing the dynamics of process elements is to 
draw block diagrams of the various elements, with their transfer 
function inside the box. The generic transfer function is often referred 
to as “G”, very often with the “s” to remind us that the transfer 
function is in the “s” domain, that is the Laplace transform of a time 
function. 

Usually lower case letters are used when referring to functions or 
signals in the time domain, and upper case letters used to describe 
functions or signals in the Laplace or s domain. Including the t or s 
helps to clarify whether we are talking about the Laplace domain or 
the time domain. We will be using block diagrams in the rest of this 
chapter. 
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We will discuss three types of transfer functions. 

1. Gain. This has no dynamics, but the output waveform is the same 
as the input waveform except multiplied by the gain, a numerical 
value. there is no time dependence. the transfer function is simply K, 
which is numerically equal to the gain in the time domain (t). 

2. Dead time does not change the shape of the input waveform, but 
simply delays it. An example would be a change in pulp consistency 
at time zero, but it is not measured by the consistency transmitter 
until L seconds later because there is a finite distance between the 
dilution valve and the transmitter. The “L” is the time lag and s is 
simply the Laplace operator. The fact that it is e-Ls  is simply the result 
of the integration that gives the Laplace transform. All you need to 
remember is that when you see “e-Ls” you know it represents a time 
delay of “L.” 

3. Dynamic elements change the shape of the input waveform. We 
will look at these in some detail.  
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We discussed the first order lag, and its transform in the Review of 
Mathematics for Process Dynamics chapter . 

This one is worth remembering, because it keeps coming up. 

The “1” in the numerator is for a generic gain of 1. The Tau is the 
time constant in minutes or seconds. 

Some examples of processes that exhibit a first order response are: 

Tank Level: response to changes in incoming flow rate. 

Thermometer: response of the height of the mercury column to 
changes in surrounding water temperature. 
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Some additional examples of first order processes: 

Blending tank: response of exiting concentration to changes in 
incoming concentration. (Assuming no chemical reaction and 
constant level.) 

Jacketed kettle: response of exiting temperature to changes in either 
feedstock temperature or steam temperature. 

Next we will look at the responses of a first order system to step, 
ramp and sinusoidal inputs. 
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This is the step response of a first order system with a time constant 
of 10 to a step input. No surprises here, since we have discussed 
this case previously. The placeholder, tau, in the transfer function on 
the previous page has been replaced with the numerical value of the 
time constant of this particular system which is ten seconds. 

On this page the units of the time constant are clearly “seconds” 
because the graph’s time scale is labeled “Seconds.” However, 
when the scale is not known, a time constant of 10 could be seconds 
or minutes (or even hours). Remember that the “s” in the transfer 
function does not stand for seconds, but is the Laplace operator.  
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This is the response of a first order system with a time constant of 10 
to a ramp input. Note that after the transient has died out, the 
response becomes a ramp of the same slope as the input, which 
lags the input by one time constant. 
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This is the response of a first order system with a time constant of 10 
seconds to a sinusoid input with a period of 62.8 sec (an angular 
frequency of 0.1 rad / second). 

Note that there is a small transient in the first cycle which is slightly 
higher than the rest. 

In this case, the response has an amplitude of approximately 0.7 
(actually 1/ sqrt. 2) times the input. (The mathematics police require 
us to write this as “the square root of two over two.”) 

The output is lagging the input by 45 degrees. (1/8 th of a cycle) 

If the frequency of the input were changed, both the amplitude and 
phase shift of the output would also change, but its waveform would 
still be a sinusoid. 

It is not practical to draw graphs of every possible input frequency, 
so we have a different way of expressing the amplitude and phase 
shift for various frequencies. (See next page.) 
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A Bode plot graphs both the magnitude and phase shift of the 
response of a system to sinusoids of various frequencies. 

Here we see that the amplitude ratio of 0.7 (1/ sqrt.2) and the phase 
shift of 45 degrees correspond to the time response in the previous 
slide. 

At frequencies significantly greater than 0.1 rad/sec (periods 
significantly less than about 1 minute, say 1/10th of a minute), the 
system will attenuate the disturbance. At frequencies considerably 
slower than 0.1 rad/sec. (periods greater than one minute (say 10 
minutes) there will be no attenuation of the disturbance. 

This might be a mixing tank where the incoming temperature is 
fluctuating about an average point. The tank can smooth out rapid 
changes, but we would need a control system to smooth out the slow 
changes. 
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One important principle of transfer functions  and block diagrams, is 
that if you have several blocks in series, they behave just like a 
single block whose transfer function is the product of the individual 
transfer functions. 
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For example three process elements (blocks), which each exhibit a 
first order lag with a time constant of 10, would be equivalent to the 
block below and could be drawn and analyzed as a single block with 
the transfer function shown. 

By becoming familiar with the form of the transfer functions of first 
order lags and how blocks combine, you should be able to look at a 
block like the one at the bottom and recognize that it is probably the 
result of three blocks with time constants of 10 in series. 
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Now we will take a look at the dynamic behavior blocks with equal 
time constants in series. We start out with the above figure where we 
have a single process element consisting  of a tank where there is a 
constant inflow from the valve above the tank and a constant outflow 
at the bottom of the tank. As a result, the level remains constant. The 
valve is a “Perfect” valve, meaning that it can go instantly from one 
position to another. At  time t = 0 the valve opens a small amount 
causing a step change in inflow. The tank has a time constant of 10, 
so the response of the level in the tank is as shown in the figure. 
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In this figure we have added a second tank in series with the first 
which also has a time constant of 10 giving a system with two equal 
time constants in series. 

 The response of the level in the second tank to a step change in 
input to the first tank (which represents the response of a system 
with two equal time constants in series to a step change in input) is 
much slower than that of a system with a single time constant. 
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Here we have added a third tank in series, again with a time 
constant of 10, giving a system with three equal time constants in 
series. 

The response of the level in the third tank to a step change in input 
to the first tank (which represents the response of a system with 
three equal time constants in series to a step change in input) is very 
slow. 

The very slow response at the beginning of the response for the 
second tank and especially the third tank is difficult to distinguish 
from dead time and has the effect of making the process difficult to 
control. 
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In this example, we have only one of the tanks of the previous 
example (with a ten second time constant). 

Now we will use a real vale that has dynamics of its own. The valve 
also has a time constant of ten seconds. 

The combined response of the system (valve plus tank) is the same 
as what we got on the previous slide for the first two tanks with a 
perfect (no dynamics) valve. Two ten second time constants behave 
the same regardless of what sort of device or process is contributing 
its time constant to the response of the overall system. 

Note that control valves very often have responses that are more 
complex than first order, but that is a subject for another day. 
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Here we have replaced the control valve that has a ten second time 
constant with a much faster valve, one with a one second time 
constant. (When the “s” in the denominator of the transfer function 
has no number in front of it, that is the same as multiplying it by 
“1.0”,  that is, writing “s” is the same as writing “1s” for a time 
constant of 1.) 

The combined transfer function for this system is the product of the 
one second first order lag transfer function of the valve and the ten 
second first order lag transfer function of the tank. 

When we have a system with one long time constant and one short 
time constant, we say the long one is “dominant,” that is the overall 
response is very close to what would result if only the long time 
constant were present, and the short one has very little effect as 
shown here. 
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Many common processes at least act very much like a combination 
of GAIN, DEAD TIME and A FIRST ORDER response. 
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Since it is not always even clear which part of the process is 
responsible for each part of the response we use the rule of 
combining the gain, the dead time (when present) and the first order 
response (or an approximation of a first order response) into a 
process model we call a FIRST ORDER PLUS DEAD TIME model. 
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This is a water heater that we will examine the response of and 
attempt to model it as a first order plus dead time element. 

 

 

   



55 
 

 

 

This is a block diagram of the water heater. Each major component 
is represented by a box. If we knew the transfer functions of each 
component, we could write it in each box. In this case we do not 
have specific information on each block. 

We could probably approximate the valve as a first order element, 
hopefully with a minimum amount of dead time. 

The heater itself may have more than one time constant and might 
appear to have dead time because of the interaction of similar time 
constants. 

The transmitter will have a time constant, but probably much faster 
than the heater, however a temperature sensor in a thermowell will 
also exhibit a time constant. 
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To develop a first order plus dead time model of the water heater, we 
would perform a “bump” test. We put the controller in manual mode 
and then step the controller output by a small amount, perhaps 5%, 
and then record the response of the process. Here the lower graph is 
the controller output, and the upper graph is the response of the 
temperature of the water coming out of the water heater as 
measured by the temperature transmitter. 

The gain of anything is defined by the change in output 
(temperature) divided by the corresponding change in input 
(controller output). In this example the gain is 1.2. 

To find the approximate effective dead time, we draw a line that is 
tangent to the reaction curve at the point of inflection (where the 
slope is the greatest). We take the effective dead time to be the time 
between the controller output step and where the tangent line 
intersects the graph at the process value before the step. In the 
example, by carefully reading the graph, we find the dead time (L) is 
21 seconds. 

We will define the approximate time constant as the time between 
the end of the approximate dead time and the time the process 
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variable reaches 63% of its final value. In the example, by carefully 
reading the graph, this turns out to be 76 seconds. 

We can now substitute the values we experimentally determined for 
K, L and tau into the transfer function, and we have a first order plus 
dead time model of the water heater.  
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We talked earlier about the response of the level in a tank that has a 
valve in the outlet. When the inlet flow suddenly increases by a small 
amount the level starts going up, but because the pressure (head) at 
the bottom of the tank is increasing, the flow out also increases. The 
level will finally settle out at a new higher point. This is a first order 
process. 
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If the flow out of the tank is fixed, say by a pump, a small increase in 
the inlet flow starts increasing the level, but the increased pressure 
at the bottom of the tank does not affect the outflow. The result is 
that the level just keeps going up! 

This dynamic system is called and INTEGRATOR. Liquid tanks with 
fixed outlet flow are the most often encountered integrators. 

The pressure in a closed gas tank will also continue to rise under a 
constant flow into the tank and will also be an integrating process. 
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This is an interesting one. 

If the feed water flow suddenly increased, you would expect the level 
to start going up. 

Instead, the level first goes down, then starts going up. 

The “Liquid” in the bottom of the drum is actually composed of both 
water and steam bubbles existing in equilibrium at the saturation 
temperature. 

If feed water flow is increased, the liquid temperature will initially 
drop and many of the bubbles will condense, with the result that the 
“liquid” becomes denser and the level drops (called shrink). The 
opposite would happen if the feed water flow decreased (called 
swell). 

Eventually, the temperature will increase to the saturation point, and 
the level will rise as the bubbles once again begin to form. 
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A second order system is one which is described by an equation that 
includes a second derivative.  See the “Y double dot” term in the 
upper time based differential equation and the s squared term in the 
transfer function. (Remember from the table of transforms that s 
squared represents a second derivative.) 

In this example, a quick change in the position of the top end of the 
spring (input to the system) can give different responses depending 
on how much energy is dissipated by the viscosity of the liquid. If 
there was no liquid, the response would be very oscillatory. With a 
very thin liquid, the response would be oscillatory, but the oscillations 
would dampen out very quickly. If the liquid was very viscous, the 
mass would slowly move to its new position with no overshoot at all. 

The amount of oscillation or lack thereof depends on how quickly 
energy is dissipated, and is accounted for by the DAMPING 
FACTOR, ZETA. 

(My American Heritage dictionary shows the preferred pronunciation 
of “zeta” is with the “E” pronounced like a long “A” and the accent 
on the first syllable.) 
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Here is the response of the mass spring system for various values of 
zeta. 

A system with a damping factor of 1.0 is referred to as critically 
damped. The response is the fastest possible without overshooting. 

Larger values than 1 are referred to as over  damped, and smaller 
values are referred to as under damped.  
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An interesting fact is that  a critically damped system (zeta equal to 
1.0) behaves exactly the same as two equal time constants in series. 

Note that there is no significance to the time constants of 10 except 
that they are equal to each other. 
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We can use this block diagram of a “Smith Predictor” to practice 
reading block diagrams with transfer functions. 

Here we have a PID controller controlling a process that has 
dynamics, G(s) and dead time, e-Ls. 

The dead time makes the process difficult to control, since if the 
controller output changes it takes some time before the controller 
input knows what the process did. 

To help speed up control, we add a block into the controller with the 
same dynamics as the process (or at least as close as we can come) 
so that the controller will know right away approximately what the 
process is doing. Eventually the actual process response will get 
back to the controller. To avoid a double response, we also send the 
approximate process response from the G(s) block in the controller 
through a dead time equal to that of the process and subtract out the 
simulated process response at exactly the same time as the actual 
response reaches the controller. Since it is impossible for the 
simulated response to exactly match the real response, now the 
simulated response has been cancelled out, all that is left is the 
difference between the simulated and actual response to trim the 
controller’s output to put the process exactly where it needs to be. 
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This is a comparison of the process response to a load upset in a 
system with dead time, both with and without the Smith Predictor. 
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Chapter 3

PID Control and Controller 
Tuning Methods
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Here we see the definitions of what “P”, “I” and “D” stand for. We will 
discuss in detail each of these control modes on the following pages, 
followed by a brief discussion of three tuning methods. 
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The basic control mode is the “Proportional” mode, which “uses the 
error to reduce the error.” To help in understanding this control mode 
we use a diagram of a mechanical proportional controller which is a 
float that operates a valve to maintain the level at the desired set 
point of  a level of 50%. 

Lets first see what would happen if the fulcrum point was set at the 
left most position (for now ignore the other two fulcrums). The 
operation of the controller is graphically represented by the line with 
the steepest slope. The horizontal axis is the percent error from the 
set point of 50% full. The vertical axis is valve position. (If this were a 
pneumatic or electronic controller the vertical axis would be the 
controller output signal, but because this is a mechanical controller 
the controller output is the valve position.) 

The definition of gain of any device is “change in output divided by 
the corresponding change in input.” For a proportional controller the 
output is the controller output (abbreviated “C.O.”). The input is the 
error between set point and measurement. Throughout this chapter 
“e” is the error between the set point (SP) and the measurement of 
the process variable. The symbol for gain is usually “K.” Here we are 
talking about the “proportional” gain, so the symbol is K with a 
subscript “p” for “proportional.” For the fulcrum in the left most 
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position and the resulting graph of error versus valve position with 
the steepest slope when the error changes from minus 25% to plus 
25% (a total of 50%) the valve position changes by 100%. So the 
proportional gain is 100 divided by 50 or 2. With the fulcrum in this 
far left position we will get the largest change in valve position for a 
given change in float position, so, of the three fulcrum positions, this 
one will give the highest gain (or the greatest sensitivity). 

If we move the fulcrum to the center position, the valve travel does 
not change as much for the same amount of error, and the action of  
the controller is represented by the center line on the graph. In this 
case a change of error from minus 50%  to plus 50% (a total of 
100%) causes the valve travel to change by 100%. So the gain is 
now 100 divided by 100 or 1. 

Moving the fulcrum to the far right position gives us the least 
sensitivity. The action of the controller is represented by the graph 
with the smallest slope. In this case a change of error from minus 
50%  to plus 50% (a total of 100%) causes the valve travel to change 
by 50%. So the gain is now 50 divided by 100 or 0.5. 

Sometimes, instead of talking about proportional gain, people talk 
about the “Proportional Band” abbreviated in the figure “P.B.” 
Mathematically, the proportional band is the reciprocal of the 
proportional gain times 100 and expressed as a percent. 

Once there is a change in load (in this example the flow out of the 
tank) there will always be some offset (the difference between the 
set point and the actual measurement, in this example the 
measurement is the tank level). In order for the valve to open farther 
so that the inflow will match the new higher outflow, the float will 
have to be lower than it was originally. 

This is a characteristic of all controllers that only have the 
proportional mode. The proportional mode uses the error to 
reduce the error so it is necessary for there to be an error (in 
control terms called “offset”) for the error reduction to take 
place. 
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The equation at the top mathematically describes the proportional 
control action. “u” (the controller output) which is a function of time 
equals the proportional gain times the error between measurement 
and set point which is also a function of time.  K sub p in the box is 
how we would draw the block diagram of a proportional controller, 
and  K sub p is the transfer function of a proportional controller. For 
our purposes in understanding control modes, it is not so important 
to remember the equations or transfer functions, but since we spent 
a lot of time understanding what a function is and what a transfer 
function is, these are included to make the presentation complete.  

The two graphs on the left show the relationship between the 
measurement and the controller output from a proportional controller. 
As soon as an error (e) occurs between measurement and set point, 
the controller output changes to exactly mirror the error, except that 
the magnitude of the controller output change is dependent on the 
proportional gain of the controller. In this case, the proportional gain 
is less than one, since the change in output is less than the change 
in error. The direction of the controller output change is chosen so as 
to be in the direction that will tend to correct the error. The graphs on 
the left are showing the “open loop” interaction between error and 
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controller output, that is we are seeing how the controller responds 
to an error, but the output is not connected to the process. Shortly 
we will see screen shots from the Expertune Loop Simulator that 
show us exactly what happens when the loop is closed and the 
controller is controlling the process. 

The graph on the right shows how a first order process would 
respond to a step change in load while being controlled by a 
proportional controller. The important point here is that with 
proportional control we are using the error to reduce the error, so 
there will always be some residual error, which we call offset. 
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We will use this water heater to study the behavior of the various 
control modes. Although the water heater consists of several 
dynamic sub systems (control valve, the heating vessel, the 
temperature element, and the temperature transmitter) when we 
perform a step test with the controller in manual we get a response 
that for all practical purposes can be treated as a first order response 
with dead time. A careful graphical analysis of the response (we did 
this in the chapter on process dynamics) yielded the transfer function 
shown in the box at the right of the figure. 

The transfer function tells us that the process gain is 1.2, the dead 
time is 21 seconds and the time constant is 76 seconds. 
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To get a reference point for evaluating the performance of the 
controller, we have left the controller in manual and then introduced 
a step change in load. We did this by suddenly decreasing the 
demand for hot water. Since the steam flow does not change, the 
measured temperature increases to a new value following the 
approximately first order plus dead time response shown in the 
graph. 
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Now we put the controller into automatic mode with a small amount 
of proportional gain. The controller reduces the error some, but we 
are left with a large residual error, or “Offset.” 
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Now we have increased the proportional gain to 1.5. This higher gain 
gives a smaller offset. 
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Further increasing the proportional gain to 3 gives an even smaller 
error and thus better control. Note that there is a small oscillatory 
transient at first. 

At this point it is tempting to make the assumption that the higher the 
gain, the better the control, and that it might be possible to decrease 
the offset to a very small value by setting a very large proportional 
gain. Lets try increasing the gain some more and see what happens. 
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OOPS!!! 

At some point, with increasing proportional gain, the system 
becomes unstable. 

If we cannot tolerate some offset, we must look for some way of 
supplementing the proportional control mode. 
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In order to remove the offset of the Proportional control mode, we 
introduce the Integral (sometimes called Reset) mode. 

This page and the next give a very brief overview of what integral 
means. 

In calculus, the “integral” of a function can be interpreted to mean 
“the area under the graph of that function.” 

Here is shown an arbitrary complex function of time and its graph. If 
we knew the exact function that gives this graph, we could determine 
the area under the curve, but it often takes methods that we spent a 
whole year in calculus learning. 

The expression             would be read “the integral of f of t with 
respect to t.” 
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Fortunately, a very simple function, and one that is easy to calculate 
the area under the graph without any advanced techniques is all we 
need to make sense out of how the Integral control mode works. 
(How the integral control mode works is explained on the next page.) 

Here we have a time function who’s value is always 1.0. Since the 
function’s value remains constant, the area under its graph is always 
a rectangle, and the area of a rectangle is very easy to calculate 
without using any advanced techniques. 

Imagine starting at time equal to zero, and then watching what 
happens as time progresses. 

At exactly time = zero, the length of the rectangle is zero and its 
width is 1. The area is zero times one or zero. (Easy!) After one 
second has passed, (time is now equal to 1 second) the length of the 
rectangle is 1, and the width is 1, so the area is 1 times 1, or 1, and 
the lower graph shows how the integral (area under the curve in the 
upper graph) has changed during the first second. As time continues 
to progress and the area of the rectangle increases, the lower graph 
continues to track what the rectangle’s area is at any moment. Since 
the area under the curve is increasing in a linear fashion with time, 
the graph of the integral is a ramp, also increasing in a linear manner 
with time. 
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Adding the “integral” control mode to the proportional mode makes it 
possible to remove the offset left by the proportional mode. Another 
term that is used for integral is “reset.” 

The graphical interpretation of the mathematical “integral” function is 
“the area under a curve.” To understand what this means, consider 
the upper graph that graphs the error between measurement and set 
point. At the exact time that the measurement steps from set point to 
a new higher value, the “integral” of the error (the area under the 
graph) is zero. You of course recall that the area of a rectangle is the 
length times the width. The width is whatever the magnitude of the 
error is, for discussion let’s say it is 1.0. The length at the point 
where the measurement has just increased is zero, so 1 times zero 
is zero. 

One second later, the area under the curve is 1 (the error) times 1 
second, or 1. After 2 seconds the area is 1 times 2. After 3 seconds 
the area is 1 times 3 and so on. Therefore the integral of the error in 
this example starts at zero and increases at a constant (or linear) 
rate for as long as the error is present. This controller has been 
configured so that both the proportional and integral actions are 
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downward instead of upward, because that is the direction that will 
eliminate the error. 

At the moment the error first occurs, there is an immediate 
proportional action in the controller output. Then the controller output 
starts ramping down (integral action) in proportion to the area under 
the graph (error times the constantly increasing time). The parameter 
that is set into the controller to tell it how strongly the integral action 
is to act on the controller output is called the “integral time,” T sub I. 
The integral time is the time it takes the integral action to repeat the 
correction produced by the proportional action. A short integral time 
means that the controller ramps its output very quickly to eliminate 
the error, and a long integral time means that the output ramps very 
slowly to eliminate the error (or offset). The units are minutes (or 
seconds depending on the controller manufacturer) per repeat. 

Also some controller manufacturers use “Integral Gain” which is 
simply the reciprocal if integral time. In that case, the units are 
repeats per minute (or second). 

The graphs on the left are showing  the “open loop” interaction 
between error and controller output, that is we are seeing how the 
controller responds to an error, but the output is not connected to the 
process. On the next page we will see graphs that show us what 
happens when the loop is closed and the controller is controlling the 
process. 

As we did in the explanation of the proportional control mode, the 
equation of the time function of the controller output and the transfer 
function of a proportional plus integral (P+I) controller are shown for 
completeness of the presentation. 
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This is the same graph we saw earlier when the process was being 
controlled by a proportional only controller with a proportional gain of 
1.5. 

When we were looking at the effect of various values of proportional 
gain, we had gotten better (but slightly oscillatory) control with a gain 
of 3, but because I know that integral action is destabilizing, and 
would have resulted in an oscillatory response, I chose to use the 
slightly lower proportional gain for this example. 
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Here we have added some integral action. Initially the proportional 
action eliminates part of the error, then the integral, or reset, action 
continues to drive the control valve until all of the offset has been 
removed. In closed loop, once all of the error has been eliminated, 
the proportional action settles out at the new value required to hold 
the error at zero, and since there is no error, the integral of the error 
is zero, thus there is no further integral action. 

The next question might be: can we decrease the integral time to 
make the error be eliminated more quickly?  
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As with proportional gain, some integral is good, but too fast an 
action destabilizes the process. 
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Before discussing the Derivative (sometimes called rate) control 
mode, here is a brief review of the meaning of the derivative. 

In calculus, the derivative of a function can be interpreted as the 
instantaneous slope of that function’s graph at any point. We spent 
the better part of a year learning how to do this for all sorts of 
functions. 

Fortunately, for purposes of discussing the derivative control mode 
all we need to do is review the behavior of the derivative of straight 
lines. 

In the example, we have the graph of a function of time whose shape 
consists entirely of straight lines with different slopes. 

Starting at time zero and continuing for a while, the functions value is 
zero. Its slope is also zero and thus its derivative is zero, as shown 
in the lower graph. Suddenly the value of the function begins 
increasing at a steady rate. Its derivative (slope) instantly becomes a 
finite (and constant value) again portrayed in the lower graph. Next 
the function continues to increase, but at a lesser rate (its slope still 
has a finite and constant value, but a smaller one). Again this 
smaller, but constant rate of change (slope or derivative) is graphed 
in the lower graph. Finally the time function stops growing, and levels 
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off at a constant value. At this point there is no more change in the 
function’s value (its rate of change or slope or derivative becomes 
zero) and is graphed on the lower graph of derivative as a derivative 
of zero. 
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Using the derivative of the error to anticipate future error
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The Derivative (sometimes called rate) control mode uses the 
derivative (rate of change, or slope) of the error graph to anticipate 
future error. 

When we were discussing the proportional control mode and the 
integral control mode we discussed their action based on the 
assumption that we were controlling a fairly fast process. The 
discussion was made much more simple (without loss of meaning) 
by assuming that upon a process disturbance the measurement 
made a step increase (like in the dashed line in the upper graph in 
the figure). 

Some processes, such as the water heater we have been using as 
an example, respond very slowly to process upsets. In such a case, 
the ramp in the figure is a simplified but more realistic depiction of 
what happens. 

In this example, the process upset could have been a nearly 
instantaneous decrease in the demand for hot water from our water 
heater. At the point where the ramp just starts, the damage has 
already been done and the process is heading toward a large error. 
The problem here is that because the process responds slowly, the 
controller does not immediately see the large error that is on its way. 
The controller only sees a small error at first. 
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In the upper graph, the error starts out being very small, and with 
proportional only control, the controller’s output would only be a 
small correction at first represented by the sloping dashed line. In a 
slow process, the disturbance was very likely a large one, but 
because the process responds slowly, we do not see the large 
disturbance right away. At the point where the measurement begins 
to deviate from the set point the slope of the measurement (its 
derivative) makes a sudden jump from zero to a value equal to the 
slope of the measurement’s graph. This provides an instantaneous 
jump in the controller output, in anticipation of the large error that we 
don’t see yet, but is coming. The proportional correction gets added 
to the derivative correction, so that after the initial “boost” of the 
derivative, the controller output continues with a correction that is 
proportional to the error. (To avoid unnecessary complication to the 
explanation, I have not attempted to include the integral action in the 
above discussion.) 

The parameter that is set into the controller to tell it how strongly the 
derivative action is to act on the controller output is called the 
“derivative time,” T sub D. The derivative time is the time it would 
have taken the proportional action to produce the correction that was 
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immediately produced by the derivative action. A short derivative 
time means that the controller adds only a small derivative output to 
anticipate a future error. A long derivative time means that the 
controller adds a large derivative output to anticipate a future error. 
The units are minutes (or seconds depending on the controller 
manufacturer). 

Also some controller manufacturers use “Derivative Gain” which is 
simply the reciprocal of derivative time. In that case, the units are 1 
over minutes (or seconds). 

The graphs on the left are showing the “open loop” interaction 
between error and controller output, that is we are seeing how the 
controller responds to an error, but the output is not connected to the 
process. Shortly we will see graphs that show us what happens 
when the loop is closed and the controller is controlling the process. 

As we did in the previous explanations of the control modes, the 
equation of the time function of the controller output and the transfer 
function of a proportional plus integral plus derivative (P+I+D) 
controller are shown for completeness of the presentation. 
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•Sometimes derivative is taken from 
measurement (dy/dt) instead of error (de/dt)

•If noise in error signal -> filtering before 
derivative

Using the derivative of the error to anticipate future error

TD = Derivative Time
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Some controllers take the derivative from the measurement rather 
than the error. This prevents a large derivative correction if the set 
point is manually changed suddenly. 

Noise spikes in a noisy measurement can cause undesired large 
outputs form the derivative mode. Derivative must be used with 
caution when the measurement is noisy. Filtering the signal before it 
goes to the derivative function can help. 
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In this figure, the upper two traces show what could be accomplished 
with proportional only and with proportional plus integral (P+I). Here 
we have added derivative (P(1.5) + I + D) to the earlier P+I to further 
reduce the maximum error. 
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The derivative mode, unlike the integral mode which tends to 
destabilize control, adds stability. Because of this, it is possible to 
increase the proportional gain from 1.5 to 2. If we had increased the 
gain to 2 with just integral we would have gotten a response with too 
much oscillation in it, but with the stabilizing effect of the derivative, 
we are able to get a response that is better that what we would have 
gotten with just P+I or with P+I+D using the proportional gain that 
would have been optimum had we not had added derivative. 
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The first formalized method for tuning PID controllers was introduced 
in 1942 in a paper by Ziegler and Nichols. This method is still 
popular with many people today. 

Ziegler-Nichols tuning is a very aggressive tuning method that 
results in a fast elimination of the disturbance, but the response is 
oscillatory in nature as we will see later. 

They proposed two methods. The preferred method was a method 
where data was taken while the process was running in closed loop, 
called the “Ultimate” method. 

With the controller in proportional only mode, the controller’s 
proportional gain is increased in small steps until a sustained 
oscillation of constant amplitude is achieved. Then the ultimate gain 
(the controller proportional gain need to obtain the sustained 
oscillation) and the period of the oscillation are recorded. 
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• Ultimate Gain = KU

• Ultimate Period = TU

• More reliable parameters by ultimate method,
but most processes will not tolerate a sustained oscillation.

 KP TI TD 

P 0.5 KU   

PI 0.45 KU 0.83TU  

PID 0.6 KU 0.5TU 0.125TU
 

Fast responding aggressive tuning

Ziegler-Nichols Tuning (closed loop)

 

Based on the ultimate gain and ultimate period, one uses the 
formulas above to calculate the tuning parameters. 

It is usually not practical to use the ultimate method because most 
processes cannot tolerate being put into a mode with sustained 
oscillations. 
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A more practical approach to obtaining Ziegler-Nichols tuning 
parameters is by conducting a step test of the process with the 
controller in manual (open loop). 

From the step test, the process gain, K, can be determined. The 
other parameters required by the formulas, delta t and L are 
obtained by drawing a tangent line to the response curve that is 
tangent to the curve at the inflection point (the point where the slope 
is the greatest) 

L, which is the time from the step in controller output to where the 
tangent line intersects the process variable before the step.  Delta t 
is the time between the point where the tangent intersects the 
process variable value before the step, and where it intersects the 
value of the process variable after the new steady state value is 
reached. 

Applying Ziegler-Nichols tuning formulas usually results in a 
response that is oscillatory. 
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A tuning method that is popular in the pulp and paper industry is 
“Lambda” tuning. With Lambda tuning, the closed loop response to a 
step change in set point approximates a first order response with a 
time constant that can be specified by the user. 

The integral time, Ti is always set to be equal to the process’ open 
loop time constant. The closed loop time constant can be set to any 
desired value by simply putting in the appropriate proportional gain, 
Kp as determined by the above formula. 

One reason for the popularity of Lambda tuning in the paper industry 
is that the response is non oscillatory. Oscillations for a surprisingly 
long way upstream of the paper machine are likely to be imprinted 
into the thickness of the final product. 

When there is coupling between control loops so that they tend to 
fight each other or “dance together” the way of decoupling them is to 
tune the fastest loop for quick response, the next fastest for five 
times slower response, the next slower for five times slower than the 
previous and so on. With Lambda tuning it is very easy to specify the 
speed of response of a loop.  

Lambda tuning usually results in slow, sluggish responses to upset. 
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This is  the closed loop response of  our water heater example to a 
step change in set point with Lambda set at three different values. 
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Here we compare the results of both step changes in set point and 
step changes in load for our water heater example when the loop is 
tuned by the two methods we have already discussed and also by 
the ExperTune loop tuning software which does a frequency domain 
analysis of an open loop step in controller output and selects tuning 
parameters that find a compromise between speed, oscillatory 
behavior and robustness. 

The Ziegler-Nichols tuning removes the error very quickly, but is 
oscillatory.  

The Lambda tuning is completely non oscillatory and has no 
overshoot on the set point change, but is very sluggish. 

The ExperTune tuning removes the error quite quickly, exhibits very 
little oscillation on the load step and only a small overshoot in the set 
point step. 
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There is one other factor that must be considered when tuning a 
control loop, and that is “robustness.”  By robustness, we mean how 
insensitive is the loop to changes in the process gain and process 
dead time. 

The superimposed graph is an analysis, done by the ExperTune 
program, of the robustness of the three sets of  tuning parameters in 
our example. 

The horizontal axis is “Gain Ratio” and the vertical axis is “Dead 
Time Ratio.” There is a set of “cross hairs” indicating the point where 
the gain ratio and dead time ratio are both equal to 1.0.  This point 
represents the combination of process gain and dead time that were 
used to tune the loop for the responses shown in the main graphs. A 
gain ratio of 2 means the process gain has increased to two times 
the gain that the loop was tuned for. A dead time ratio of 2 means 
that the dead time has increased to two times the dead time the loop 
was tuned for. The three curves in the robustness graph represent 
the combination of gain and dead time ratios that would result in the 
loop going into a sustained oscillation for each of the three tuning 
scenarios in the main graphs. That is, for the Z-N tuning, all 
combinations below and to the left of the graph would not result in a 
sustained oscillation, and all combinations of dead time and gain 
ratio above and to the right of the line would result in sustained 
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oscillation. Therefore for good control with minimal oscillation upon 
an upset, it is necessary for any new combination of gain and dead 
time ratio to not get too close to the robustness graph. 

The “box” drawn around the cross hairs is a reminder that it is not 
unusual for the process gain and/or dead time to vary by a ratio plus 
or minus 2 to 1 as the process is controlled at different operating 
points. The ExperTune help file states: “For practical system stability 
keep the limit of stability line outside the ‘box’. The vertices are 
connected by lines that are straight on a log log plot.” 

In summary, the Ziegler-Nichols tuning is very fast, but not very 
robust. The Lambda tuning is sluggish but extremely robust, and the 
parameters selected by the ExperTune software give fast response 
and good robustness.   

There are other loop tuning software packages available. I have no 
business relationship with Expertune, but it is the only loop tuning 
system that I have firsthand experience with. 
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This is a summary of the three control modes. 
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